Molecular Structures of the Reduced 1,2,4-Triazine Derivative and Its Reaction Product with Electron-deficient Acetylene

Hiroshi Ayato,* Isao Tanaka, Takashi Yamane, Tamaichi Ashida, Tadashi Sasaki, Katsumaro Minamoto, and Katsuhiko Harada

Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464 (Received April 9, 1980)

The molecular structures of 3-methylthio-2-methyl-5,6-diphenyl-2,5-dihydro-1,2,4-triazine (1) and its reaction product with dimethyl acetylenedicarboxylate, 5,6-bis(methoxycarbonyl)-2-methyl-1-methylthio-4,8-diphenyl-2,3,7-triazabicyclo[3.3.0]octa-3,6-diene (2), were determined by the X-ray method. The former belongs to the triclinic system $P\bar{1}$, with Z=2, a=10.776(2), b=10.203(2), c=8.556(1) Å, $\alpha=105.44(2)$, $\beta=104.94(2)$, and $\gamma=60.31(2)^{\circ}$; the latter belongs to the orthorhombic system Pca2₁, with Z=4, a=18.166(2), b=7.444(2), and c=16.080(2) Å. Both structures were solved by the direct method. The final R-factors are 0.075 for 1 and 0.048 for 2. In Compound 1 the dihydrotriazine ring is in the boat form, while in Compound 2 both of the cis-fused five-membered rings are in the envelope form.

Unlike the well-studied oxidation reaction of 1,2,4-triazines, the reduction chemistry here is still not completely established. Paudler has suggested that 1,2,4-triazines undergo covalent hydration across the N(4)–C(5) bond,¹⁾ and Neuenhoeffer has shown that they can act as dienes in the Diels-Alder reaction.²⁾ Therefore, the reduced compound of 3-methylthio-5,6-diphenyl-1,2,4-triazine with NaBH₄ would be methylated by methyl iodide to give 1', and the reaction of 1' with dimethyl acetylenedicarboxylate (DMAD) would produce 2'.³⁾

The present X-ray study was attempted in order to confirm the structures of those reaction products; it showed that they were 1 and 2 instead of 1' and 2'. The detailed descriptions of their structures will be given in this paper.

Experimental

Compound 1. The intensity data were collected on a Rigaku automated four-circle diffractometer at the Ultra High Intensity X-Ray Diffraction Laboratory of this university, using graphite-monochromatized Mo $K\alpha$ radiation. The ω -2 θ scan method with the scan speed of 8°/min (2 θ) was applied. A total of 2749 independent reflections up to 50° (2 θ) were collected. The crystal used for the experiment had the dimensions of $0.3 \times 0.3 \times 0.2$ mm³.

Crystal Data: $C_{17}H_{17}N_3S$, $P\overline{1}$, a=10.776(2), b=10.203(2), c=8.556(1) Å, $\alpha=105.44(2)$, $\beta=104.94(2)$, $\gamma=60.31(2)^\circ$, V=778.76 ų, Z=2, $d_{obsd}=1.25$, $d_{calcd}=1.260$ g cm⁻³,

 $\mu(\text{Mo }K\alpha) = 2.042 \text{ cm}^{-1}$.

Compound 2. The intensity data were collected on a Hilger & Watts four-circle diffractometer at the Faculty of Science, Nagoya University, using Ni-filtered Cu $K\alpha$ radiation. The ω -scan method for $2\theta \leq 80^{\circ}$ and the ω -2 θ scan for $80^{\circ} \leq 2\theta \leq 114^{\circ}$ were applied, and 1528 independent reflections were obtained. The crystal dimensions were $0.4 \times 0.2 \times 0.4$ mm³.

Crystal Data: $C_{23}H_{23}N_3O_4S$, $Pca2_1$, a=18.166(2), b=7.444(2), c=16.080(2) Å, V=2174.46 ų, Z=4, $d_{obsd}=1.33$, $d_{calcd}=1.336$ g cm⁻³, $\mu(Cu\ K\alpha)=15.71$ cm⁻¹.

Structure Determination and Refinement

The intensity data of both compounds were corrected for Lorentz and polarization effects, but not for absorption. Both structures were solved by the MULTAN program⁴⁾ and refined by the block-diagonal least-squares procedure with the HBLS V program.⁵⁾ All the hydrogen atoms were located on the difference Fourier map. In the refinement, the function minimized was $\sum w(|F_0| - |F_c|)^2$, with w = $(\sigma^{2}(F)+a|F_{o}|+b|F_{o}|^{2})^{-1}$ for $|F_{o}|>0$ and w=c for $|F_{o}|=0$, where $\sigma(F)$ is the standard deviation based on the counting statistics. The thermal parameters of three hydrogen atoms in the S-methyl group of 1 were fixed at 8.0 Å2 throughout the refinement, but all the others were subjected to the refinement. The final R-factors were 0.075 for 1 and 0.048 for 2. The atomic scattering factors were taken from the International Tables for X-Ray Crystallography. 6) All the calculations were carried out on a FACOM 230-75 computer at Nagoya University. The final atomic parameters are given in Tables 1 and 2.7)

Results and Discussion

Compound 1. The bond lengths and angles are shown in Fig. 1, together with the atom-numbering system. The estimated standard deviations are 0.003—0.005 Å for the bond lengths and 0.2—0.4° for the angles. The equations of the best planes are listed in Table 3. A stereoscopic view of the molecule, as drawn by the ORTEP II program, s) is shown in Fig. 2.

The dihydrotriazine ring is folded at N(2) and C(2) to take a boat form, with the dihedral angle between Plane (I) (N(2), N(1), C(3), C(2), and C(12)) and Plane (II) (N(2), C(1), N(3), C(2), and S) of 146.5°. The phenyl ring bonded to C(2) is in an

TABLE 1. ATOMIC PARAMETERS AND ESTIMATED DEVIATIONS OF (1)

(a) Non-hydrogen atoms ($\times 10^4$ for the positional parameters and $\times 10^2$ for the thermal parameters).

Atom	x	y	z	B _{eq} /Å ^{2 a)}	Atom	x	у	z	$B_{ m eq}/{ m \AA}^{2}$ a)
S	5124(1)	2883(1)	3810(1)	543	C(8)	5700(2)	8342(2)	2900(2)	493
N(1)	8921(1)	2101(1)	3256(1)	402	$\mathbf{G}(9)$	6687(2)	8478(2)	4233(2)	484
N(2)	7759(1)	2594(1)	4067(1)	426	C(10)	7850(2)	7197(2)	4735(2)	495
N(3)	6061(1)	3778(1)	1903(1)	354	C(11)	8037(2)	5754(2)	3899(2)	421
C(1)	6395(2)	3153(2)	3150(2)	378	C(12)	9840(2)	2202(2)	1094(2)	377
C(2)	7195(2)	4056(2)	1618(2)	332	C(13)	9797(2)	3085(2)	82(2)	492
C(3)	8658(2)	2761(2)	2037(2)	345	C(14)	10914(2)	2519(3)	-833(3)	654
C(4)	8167(2)	1725(3)	5389(2)	651	C(15)	12043(2)	1100(3)	-731(3)	698
C(5)	3523(2)	3896(3)	2470(3)	707	C(16)	12101(2)	225(2)	270(3)	600
C(6)	7058(1)	5605(2)	2557(2)	310	C(17)	11018(2)	758(2)	1180(2)	470
C(7)	5882(2)	6917(2)	2055(2)	412					

a) The equivalent isotropic temperature factor as defined by W. C. Hamilton (Acta Crystallogr., 12, 609 (1959)).

(b) Hydrogen atoms ($\times 10^3$ for positional parameters and $\times 10$ for thermal ones).

Atom	Bonded to	х	y	z	$B/ m \AA^2$	Atom	Bonded to	x	y	z	$B/ m \AA^2$
H(1)	C(2)	704(1)	409(1)	46(1)	10(3)	H(10)	C(9)	653(1)	948(1)	481 (2)	30(4)
H(2)	C(4)	743(2)	225(2)	605(2)	51(6)	H(11)	C(10)	862(2)	724(2)	573(2)	41 (5)
H(3)	C(4)	911(2)	180(2)	610(3)	68(7)	H(12)	C(11)	886(2)	482(2)	423(2)	36(5)
H(4)	C(4)	828(2)	65(2)	488(2)	59(6)	H(13)	C(13)	901(1)	412(2)	0(2)	25 (4)
H(5)	C(5)	270(2)	397(3)	284(3)	80a)	H(14)	C(14)	1074(2)	322(2)	-153(2)	50(6)
H(6)	C(5)	358(2)	341 (3)	145(3)	80a)	H(15)	C(15)	1274(2)	70(2)	-138(2)	53(6)
H(7)	C(5)	350(2)	488(3)	260(3)	80a)	H(16)	C(16)	1286(2)	-81(2)	28(2)	50(5)
H(8)	C(7)	516(2)	680(2)	109(2)	30(4)	H(17)	C(17)	1097(2)	17(2)	193(2)	30(4)
$\mathbf{H}(9)$	C(8)	488(2)	924(2)	250(2)	43 (5)						

a) These parameters were fixed.

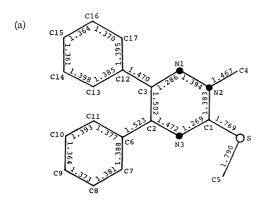


Fig. 1. Bond lengths and angles of 1. (a) Bond lengths (l/Å), and (b) bond angles $(\phi/^{\circ})$.

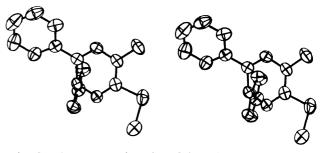


Fig. 2. A stereoscopic veiw of 1. The atoms are represented by thermal ellipsoids drawn at the 50% probability level.

axial position with the torsion angle (C(3)-C(2)-C(6)-C(11)) of 14.1°, so that it can avoid close interaction with the C(3)-phenyl group.

The N(1)-C(3) and C(1)-N(3) double-bond lengths are 1.286 Å and 1.269 Å respectively. The N(3)-C(2) bond length is compatible with the single-bond distance, while the N(2)-C(1) bond length of 1.383 Å is significantly shorter and the N(1)-N(2) of 1.394 Å is shorter than the single-bond distance of 1.44 Å.9 These shortenings and the coplanarity of the C(3)-phenyl group and Plane (I) are due to the delocalization of the π -electrons and lone-pair electrons of N(2). The sp² character of the N(2) atom is further evidenced by the planar arrangement of the bonded atoms, as is indicated by the sum of the bond angles, 351.6°. The C(1)-S bond, 1.769 Å, is shorter than the normal

Table 2. Atomic parameters and estimated standard deviations of (2)

Atom	x	у	z	$B_{ m eq}/{ m \AA}^2$	Atom	x	У	z	$B_{ m eq}/{ m \AA}^2$
S	3460(1)	6042(1)	4590(1)	374	C (9)	2932(2)	1909(7)	1833 (3)	399
O(1)	3913(1)	2685 (4)	3520(2)	401	C(10)	2633(3)	401 (7)	1450(4)	453
O(2)	4654(1)	3852(4)	2544(3)	405	C(11)	1896(3)	265(9)	1303(4)	552
O(3)	3573(2)	5346(9)	901(3)	778	C(12)	1440(3)	1686 (10)	1545 (4)	520
O(4)	4649(2)	6727 (5)	993(2)	468	C(13)	1724(2)	3171(8)	1939(4)	431
N(1)	2299(2)	6055(5)	2839(3)	382	C(14)	2233(3)	8586(9)	3767(5)	593
N(2)	2668(2)	7376(5)	3257(3)	401	C(15)	2709(3)	4449(8)	4669(4)	531
N(3)	4113(2)	8199(5)	2446(2)	339	C(16)	4669(2)	8306(6)	3838(3)	337
C(1)	3554(2)	5392(6)	2798(3)	272	C(17)	4691(3)	9115(7)	4620(4)	435
C(2)	2752(2)	4885 (6)	2554(3)	279	C(18)	5334(3)	9098(7)	5081 (4)	482
C(3)	3403(2)	6762(6)	3508(3)	309	C(19)	5973(3)	8308(8)	4762(3)	492
C(4)	3959(2)	8315(6)	3339(3)	304	C(20)	5957(2)	7576(9)	3983 (5)	520
C(5)	3916(2)	6661 (6)	2178(3)	279	C(21)	5308(2)	7547 (7)	3509(3)	384
C(6)	4045(2)	3812(5)	3014(3)	274	C(22)	4028(2)	6170(6)	1278(3)	333
C(7)	5181(2)	2400(8)	2676(5)	528	C(23)	4801(3)	6222(8)	123 (4)	603
C(8)	2484(3)	3300(6)	2089(3)	331					

(b) Hydrogen atoms ($\times 10^3$ for positional parameters and $\times 10$ for thermal ones).

Atom	Bonded to	x	y	z	$B/ m \AA^2$	Atom	Bonded to	х	y	z	$B/ m \AA^2$
H(1)	C(4)	368(2)	940(6)	348 (4)	15 (10)	H(13)	C(15)	268 (4)	395 (8)	530(5)	48 (18)
H(2)	C(7)	564(4)	260(11)	233(6)	61 (20)	H(14)	C(15)	279(3)	337 (10)	425 (5)	46 (17)
H(3)	C(7)	495(3)	112(11)	253(6)	58(21)	H(15)	C(15)	221(3)	516(7)	453(5)	34(14)
H(4)	C(7)	531(3)	233(11)	329(7)	60(21)	H(16)	C(17)	418(3)	980(7)	487 (4)	34(14)
H(5)	C(9)	349(2)	179(8)	196(4)	24(12)	H(17)	C(18)	529(3)	969(7)	566 (4)	30(13)
H(6)	C(10)	300(3)	-77(8)	129(5)	36 (15)	H(18)	C(19)	646(2)	838(7)	513(4)	25 (12)
H(7)	C(11)	165(3)	-86(9)	104(5)	44 (16)	H(19)	C(20)	641(2)	704(9)	371(4)	32 (15)
H(8)	C(12)	86(3)	155 (8)	142(4)	32 (14)	H(20)	C(21)	531(2)	690(9)	290(4)	33 (14)
H(9)	C(13)	137(3)	427(8)	210(5)	37 (15)	H(21)	C(23)	533(2)	673(8)	8(5)	32(13)
H(10)	C(14)	175 (3)	885 (8)	347(4)	36 (15)	H(22)	C(23)	439(3)	677 (10)	-21(5)	50(17)
H(11)	C(14)	253 (5)	955 (7)	388(6)	57 (19)	H(23)	C(23)	477(3)	478(7)	8(4)	33 (14)
H(12)	C(14)	209(3)	802 (10)	439 (5)	46 (17)					•	

Table 3. Best planes of (1)

(a) Equations (X=ax+0.4953by-0.2578cz, Y=0.8687by-0.1595cz, Z=0.9529cz)

Plane (I): N(1), N(2), C(2), C(3), C(12)

0.5504X + 0.5556Y + 0.6232Z - 7.8915 = 0

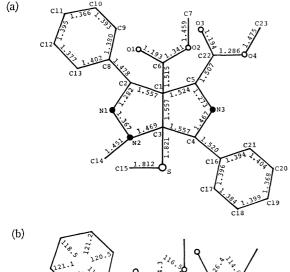
Plane (II): S, N(2), N(3), C(1), C(2)

0.0230X + 0.7858Y + 0.6180Z - 3.6336 = 0

Plane (III): C(2), C(6), C(7), C(8), C(9), C(10), C(11)0.7898X + 0.1161Y - 0.6023Z - 7.0700 = 0

Plane (IV): C(3), C(12), C(13), C(14), C(15), C(16), C(17) 0.5904X+0.2788Y+0.7574Z-7.9449=0

(b) Dihedral angles $(\psi/^{\circ})$ between the planes (I)—(II) 146.5 (I)—(IV) 162.2 (II)—(III) 105.2


(c) Dis	placer	nents (δ)	10 ⁻³ Å)	of aton	as from	the pla	nes
(I)	(II))	(II	I)	(I)	V)
N(1)	-32	S	-28	C(2)	12	C(3)	14
N(2)	26	N(2)	11	C(6)	-10	C(12)	-9
C(2)	-6	N(3)	62	C(7)	-10	C(13)	-9
C(3)	-5	C(1)	8	C(8)	6	C(14)	1
C(12)	18	C(2)	-52	C(9)	5	C(15)	11
$C(4)^{a}$	42	$C(4)^{a}$	99	C(10)	1	C(16)	1
. ,		$C(5)^{a}$	-180	C(11)	-4	C(17)	- 9

a) Atoms not included in the best-plane calculations.

C–S single-bond length of 1.81 Å, with a small amount of double-bond character. Consequently, the C(5) atom deviates from Plane (II) by only 0.18 Å, and a short contact, 2.893 Å, occurs between C(5) and N(3). Such a shortening is also observed in 2-(methylthio)benzothiazole, in which the C–S bond length is 1.77 Å.

Compound 2. The bond lengths and angles are shown in Fig. 3, together with the atom-numbering system. The estimated standard deviations are 0.006—0.012 Å for the bond lengths and 0.3—0.8° for the angles. The equations of the best planes are listed in Table 4. A stereoscopic view of the molecule is shown in Fig. 4.

The molecule consists of two central cis-fused five-membered rings and six peripheral side groups directly bonded to them. Each of the five-membered rings is in the envelope form. In one five-membered ring, C(1), C(2), N(1), and N(2) are coplanar (Plane (I)), including C(8) of the phenyl group, while in the other ring, C(1), C(5), N(3), and C(4) are coplanar (Plane (II)) with C(22) of the methoxycarbonyl group. These two planes form an angle of 107.7°. The C(3) atom is out of these planes by 0.47 Å and 0.39 Å respectively.

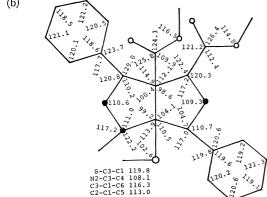


Fig. 3. Bond lengths and angles of 2. (a) Bond lengths (l/Å), and (b) bond angles $(\phi/^{\circ})$.

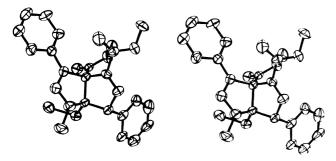


Fig. 4. A stereoscopic view of 2. The atoms are represented by thermal ellipsoids drawn at the 50% probability level.

Plane(I) and the C(2)-phenyl group are almost coplanar (the dihedral angle is 174.9°), while the dihedral angle between Plane (II) and the C(5)-methoxycarbonyl group is 140.9°, the latter being also roughly planar. As is shown in Fig. 4, three groups, methylthio, C(1)-methoxycarbonyl and C(4)-phenyl, which protrude from the fused ring to the same side, take conformations so as to avoid close interactions among the six peripheral groups.

It may be worth noting the short bond lengths of C(2)-C(8) and N(1)-N(2) compared with the corresponding single ones.⁹⁾ These observations and the coplanarity described above suggest that the delocalization of π -electrons occurs between the C(2)-phenyl ring and N(2) via C(2) and N(1). The sp² character of the N(2) atom is found in this compound as well

TABLE 4. BEST PLANES OF (2)

Equations (X=ax, Y=by, Z=cz)

\mathbf{Plane}	(I):	N(1),	N(2),	G(1), G(2)), C(8)	
		0.0858	3X+0.	5174Y - 0.	8515Z + 1.20	001 = 0
Plane	(II):			C(4), C(5)		
					2175Z-5.26	
Plane	(III):	C(2),	C(8),	C(9), C(10)	O), C(11), C	(12),
		C(13)				
					8862Z + 1.31	
Plane	(IV):		C(16),	C(17), $C(17)$	(18), C(19),	C(20),
		C(21)				
		0.2534	X+0.	8772Y - 0.	4078Z - 5.06	666 = 0
Plane	(V):			C(1), C(6)		
					6977Z - 8.31	121 = 0
Plane	(VI):	O(3),	O(4),	C(5), C(2)	2)	
		0.4305	X-0.	8585Y+0.	2785Z+0.21	193 = 0
(1)						
(b) Dil	nedral	angles	$(\phi/^{\circ})$ 1	oetween th	ne planes	
						105.7
(I)— (I)	II) 1	07.7	(I)— (I)	II) 174.9	ne planes (I)—(V) (II)—(VI)	
(I)—(I (II)—	(IV) 1	07.7 01.4	(I)—(I (II)—(II) 174.9 V) 110.8	(I)—(V) (II)—(VI)	140.9
$\frac{\text{(I)}-\text{(I)}}{\text{(c) Dis}}$	$\begin{array}{cc} (II) & 1 \\ (IV) & 1 \end{array}$	07.7 01.4	$\frac{(I)}{(II)}$ $\frac{(I)}{(II)}$ $\frac{(II)}{(II)^{-3}}$ $\frac{A}{I}$	II) 174.9 V) 110.8 a) of atom	(I)—(V) (II)—(VI) as from the p	140.9 planes
(I)—(I (II)—(I (c) Dis	$\begin{array}{cc} (II) & 1 \\ (IV) & 1 \\ \hline & \\ placem \\ (I) \end{array}$	07.7 01.4 nents (&	(I)— (I) (II) — (I) (II) — (I) (I) (I)	II) 174.9 V) 110.8 A) of atom	(I)—(V) (II)—(VI) as from the p	140.9 planes
$\frac{\text{(I)}-\text{(I)}}{\text{(c) Dis}}$ $\frac{\text{(II)}-\text{(c)}}{\text{(c)}}$	II) 1 (IV) 1 placem (I)	07.7 01.4 nents (&	(I)— $(I)(II)$ — $(I)0/10^{-3} Å(I)(I)$	II) 174.9 V) 110.8 A) of atom	(I)—(V) (II)—(VI) as from the p (III) C(2)	140.9 planes) 70
$\frac{(I)-(I)}{(II)-(I)}$ $\frac{(II)}{(C)}$ $\frac{N(1)}{N(2)}$	$\begin{array}{ccc} \text{II}) & 1 \\ \text{(IV)} & 1 \\ \text{splacem} \\ \text{(I)} \end{array}$	07.7 01.4 nents (8	(I)— (I) — (II) — (II) — (II) — (III) — $(II$	II) 174.9 V) 110.8 a) of atom II) 17 12	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8)	140.9 planes) 70 -6
(I)—(I (II)—(I (c) Dis N(1) N(2) C(1)	(IV) 1 splacem (I) 2	07.7 01.4 nents (8	(I)— (I) — (II) — (II) — (II) — (III) — $(II$	II) 174.9 V) 110.8 a) of atom II) 17 12	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9)	140.9 planes) 70 -6 -12
(I)—(1 (II)—(1) (c) Dis N(1) N(2) C(1) C(2)	(IV) 1 splacem (I) 2 (IV) 4 (I	07.7 01.4 nents (&	(I)—(I (II)—(0/10 ⁻³ Å (I N(3) C(1) C(4) C(5)	II) 174.9 V) 110.8 a) of atom I) 17 12 -11 -3	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9) C(10)	140.9 planes 70 -6 -12 12
(I)—(I (II)—(I (c) Dis N(1) N(2) C(1)	(IV) 1 splacem (I) 2	07.7 01.4 nents (&	(I)—(I (II)—(0/10 ⁻³ Å (I N(3) C(1) C(4) C(5)	II) 174.9 V) 110.8 a) of atom II) 17 12	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9) C(10) C(11)	140.9 planes) 70 -6 -12 12 16
(I)—(1 (II)—(1) (c) Dis N(1) N(2) C(1) C(2)	(IV) 1 splacem (I) 2 (IV) 4 (I	07.7 01.4 nents (&	(I)—(I (II)—(0/10 ⁻³ Å (I N(3) C(1) C(4) C(5)	II) 174.9 V) 110.8 a) of atom I) 17 12 -11 -3	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9) C(10) C(11) C(12)	140.9 planes) 70 -6 -12 12 16 -6
(I)—(1 (II)—(1) (c) Dis N(1) N(2) C(1) C(2)	(IV) 1 splacem (I) 2 (IV) 4 (I	07.7 01.4 nents (&	(I)—(I (II)—(0/10 ⁻³ Å (I N(3) C(1) C(4) C(5)	II) 174.9 V) 110.8 a) of atom I) 17 12 -11 -3	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9) C(10) C(11)	140.9 planes) 70 -6 -12 12 16 -6
(I)—(I)—(II)—(II)—(II)—(II)—(II)—(II)—((IV) 1 splacem (I) 2 (IV) 4 (I	07.7 01.4 nents (&	(I)—(I (II)—(0/10 ⁻³ Å (I N(3) C(1) C(4) C(5)	II) 174.9 V) 110.8 a) of atom I) 17 12 -11 -3	(I)—(V) (II)—(VI) as from the p (III) C(2) C(8) C(9) C(10) C(11) C(12)	140.9 planes) 70 -6 -12 12 16 -6 -2

Atoms not included in the best-plane calculations.

0

2

3

8

O(4)

C(5)

C(22)

C(23)a)

1

-2

50

O(2)

C(1)

C(6)

C(7)a)

as in Compound 1, and the sum of the bond angles around the N(2) atom is 350.4°.

The authors would like to express their thanks to Prof. Jiro Tanaka of Nagoya University for his very kind permission to use the diffractometer.

References

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

10

1

15

-- 11

-4

-16

- 1) W. W. Paudler and L. K. Chen, J. Heterocycl. Chem., **7**, 767 (1970).
- 2) H. Neunhoeffer and H. W. Fruhauf, Ann. Chem., **758**, 125 (1972).
- 3) T. Sasaki, K. Minamoto, and K. Harada, Heterocycles, 10, 93 (1978).
- 4) G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., Sect. A, 27, 368 (1971).
 5) T. Ashida, "The Universal Crystallographic Computing System-Osaka," The Computation Center, Osaka puting System-Osaka," University (1973), p. 55.
- 6) "International Tables for X-Ray Crystallography, The Kynoch Press, Birmingham (1974), Vol. IV, p. 72.
- 7) The F_o and F_c tables and anisotropic temperature factors are available at the Office of the Editor of the Bulletin
- of the Cemical Society of Japan as Document No. 8037.

 8) C. K. Johnson, "ORTEP II," Report ORNL-3794,
 Oak Ridge National Laboratory, Tennessee (1971).

 9) "International Tables for X-Ray Crystallography,"
 The Kynoch Press, Birmingham (1968), Vol. III, p. 270.
- 10) P. J. Wheatley, J. Chem. Soc., 1962, 3636.